Relative expression factors (REFs) are used to scale in vitro transporter kinetic data via in vitro–in vivo extrapolation linked to physiologically based pharmacokinetic (IVIVE-PBPK) models to clinical observations. Primarily two techniques to quantify transporter protein expression are available, immunoblotting and liquid chromatography–tandem mass spectrometry. Literature-collated REFs ranged from 0.4 to 5.1 and 1.1 to 90 for intestinal P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP), respectively. The impact of using human jejunum–Caco-2 REFs for P-gp (REFiP-gp) and BCRP (REFiBCRP), generated from the same samples and using different proteomic methodologies from independent laboratories, on PBPK outcomes was assessed. A 5-fold decrease in REFiP-gp for a single oral dose of digoxin resulted in a 1.19- and 1.31-fold higher plasma area under the curve and Cmax, respectively. All generated REFiP-gp values led to simulated digoxin Cmax values within observed ranges; however, combining kinetic data generated from a different laboratory with the 5-fold lower REFiP-gp could not recover a digoxin-rifampicin drug-drug interaction, emphasizing the necessity to obtain transporter-specific kinetic estimates and REFs from the same in vitro system. For a theoretical BCRP compound, with absorption taking place primarily in the jejunum, a decrease in the REFiBCRP from 2.22 (University of Manchester) to 1.11 (Bertin Pharma) promoted proximal intestinal absorption while delaying tmax 1.44-fold. Laboratory-specific differences in REF may lead to different IVIVE-PBPK outcomes. To understand the mechanisms underlying projected pharmacokinetic liabilities, it is important to assess the potential impact of bias on the generation of REFs on an interindividual basis within a target population.
Matthew D. Harwood, Brahim Achour, Sibylle Neuhoff, Matthew R. Russell, Gordon Carlson, Geoffrey Warhurst, and Amin Rostami-Hodjegan
http://dx.doi.org/10.1124/dmd.115.067777
vol. 44 no. 3 476-480
DMD